Fast interfacial charge transfer in α-Fe2O3−δCδ/FeVO4−x+δCx−δ@C bulk heterojunctions with controllable phase content

نویسندگان

  • Chengcheng Zhao
  • Guoqiang Tan
  • Wei Yang
  • Chi Xu
  • Ting Liu
  • Yuning Su
  • Huijun Ren
  • Ao Xia
چکیده

The novelties in this paper are embodied in the fast interfacial charge transfer in α-Fe2O3-δCδ/FeVO4-x+δCx-δ@C bulk heterojunctions with controllable phase compositions. The carbon source-glucose plays an important role as the connecting bridge between the micelles in the solution, forming interfacial C-O, C-O-Fe and O-Fe-C bonds through dehydration and polymerization reactions. Then the extra VO3- around the FeVO4 colloidal particles can react with unstable Fe(OH)3, resulting the phase transformation from α-Fe2O3 (47.99-7.16%) into FeVO4 (52.01-92.84%), promoting photocarriers' generation capacities. After final carbonization, a part of C atoms enter into lattices of α-Fe2O3 and FeVO4, forming impurity levels and oxygen vacancies to increase effective light absorptions. Another part of C sources turn into interfacial carbon layers to bring fast charge transfer by decreasing the charge transition resistance (from 53.15 kΩ into 8.29 kΩ) and the surface recombination rate (from 64.07% into 7.59%). The results show that the bulk heterojunction with 90.29% FeVO4 and 9.71% α-Fe2O3 shows ideal light absorption, carriers' transfer efficiency and available photocatalytic property. In general, the synergistic effect of optimized heterojunction structure, carbon replacing and the interface carbon layers are critical to develop great potential in stable and recoverable use.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural, Magnetic and Catalytic Properties of Non-Stoichiometric Lanthanum Ferrite Nano-Perovskites in Carbon Monoxide Oxidation

Perovskite-type oxides of LaFe(1+x)O(3+δ) (x = 0.0, 0.2, 0.5 and 0.7) were synthesized by citrate sol–gel methodto ensure the formation of nanosized perovskites. The physicochemical properties of these LaFe(1+x)O(3+δ)materials were characterized by thermal gravimetric/differential analyses, Fourier transform infraredspectroscopy, X-ray powder diffraction, scanning electron and...

متن کامل

Synergistic contributions by decreasing overpotential and enhancing charge-transfer in α-Fe2O3/Mn3O4/graphene catalysts with heterostructures for photocatalytic water oxidation.

A novel nanocomposite consisting of α-Fe2O3, Mn3O4 and reduced graphene oxide (r-GO) has been facilely synthesized through a two-step method: solvothermal reaction for Mn3O4-modified α-Fe2O3 (α-Fe2O3/Mn3O4) and self-assembly process for combining α-Fe2O3/Mn3O4 with r-GO (α-Fe2O3/Mn3O4/r-GO). The morphology and structure of the nanocomposite were characterized by X-ray diffraction (XRD), scannin...

متن کامل

Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution.

We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure - in the presence of Fermi-level pinning - at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fer...

متن کامل

Charge-Transfer Induced Magnetic Field Effects of Nano-Carbon Heterojunctions

Room temperature magnetic field effects have not been definitively observed in either single-walled carbon nanotubes (SWCNTs) or C₆₀ under a small magnetic field due to their weak hyperfine interaction and slight difference of g-factor between positive and negative polarons. Here, we demonstrate charge-transfer induced magnetic field effects in nano-carbon C₆₀-SWCNT bulk heterojunctions at room...

متن کامل

Superior electrochemical performance and structure evolution of mesoporous Fe2O3 anodes for lithium-ion batteries

ont matter & 2013 0.1016/j.nanoen.2 thor. Tel.: +1 301 uthor. Tel.: +1 30 : [email protected] (M . Wang). ntributed equally Abstract Mesoporous Fe2O3 spherical particles with amorphous or crystalline structure were prepared at different temperatures using aerosol spray pyrolysis. The crystalline Fe2O3 (C-Fe2O3) anodes pyrolysized at 800 1C show better electrochemical performance than the amorphous Fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016